skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Southerland, Sherry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Responsive teaching, a pedagogical approach that foregrounds and builds instruction on student ideas, requires teachers to attend to and build on student resources. However, teachers’ interpretations of student resources, especially during live teaching, remain understudied. In this study, we examined in-the-moment interpretations, teachers’ real-time sense-making of and reflection on students’ epistemic and emotional resources, and explored how teachers’ in-themoment interpretations can support their responsive teaching talk moves and knowledge. Employing a convergent mixed-methods research design, we designed and implemented a generative artificial intelligence (AI)-supported virtual simulation as a pedagogical sandbox for 40 preservice teachers (PSTs) to practice teaching with virtual students, interpret student resources, and act on these interpretations in real time. Linear regression analysis was conducted and found that PSTs’ in-the-moment interpretations are significant predictors of their responsive teaching talk moves and knowledge. Qualitative thematic analysis identified themes that corroborated and extended the findings of the quantitative component. Implications for teacher education and simulation design are discussed. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. This case study reports on the perceptions and dialogic behaviors of 15 preservice K-12 teachers engaging in simulation-based teaching practice with AI-powered student agents. Data included transcripts of text-based classroom dialogue, interviews, observations, and conversation logs. Using mixed-methods analyses and a framework of ambitious science teaching, we identified two key findings that are important to Human-AI interaction researchers and teacher trainers. First, AI-powered student agents exhibit naturalistic discourse behavior, with ambitious talk moves leading to more rigorous student contributions and conservative talk moves leading to low rigor contributions. And second, preservice teachers’ dialogue was responsive to the AI-powered students’ contributions. 
    more » « less
  3. Abstract Recent instructional reforms in science education aim to change the way students engage in learning in the discipline, as they describe that students are to engage with disciplinary core ideas, crosscutting concepts, and the practices of science to make sense of phenomena (NRC, 2012). For such sensemaking to become a reality, there is a need to understand the ways in which students' thinking can be maintained throughout the trajectory of science lessons. Past research in this area tends to foreground either the curriculum or teachers' practices. We propose a more comprehensive view of science instruction, one that requires attention to teachers' practice, the instructional task, and students' engagement. In this study, by examining the implementation of the same lesson across three different classrooms, our analysis of classroom videos and artifacts of students' work revealed how the interaction of teachers' practices, students' intellectual engagement, and a cognitively demanding task together support rigorous instruction. Our analyses shed light on their interaction that shapes opportunities for students' thinking and sensemaking throughout the trajectory of a science lesson. The findings provide implications for ways to promote rigorous opportunities for students' learning in science classrooms. 
    more » « less